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Abstract

A numerical model of the acoustic impedance of perforated plates under bias flow conditions was derived, with

consideration given to the interaction effect between orifices. The normalized impedance divided by the mean flow Mach

number of an orifice was expressed as a function of the Strouhal number varying the porosity and thickness-to-radius

ratio. The prediction model was accomplished by solving the incompressible Euler equation for an orifice in a finite-

thickness partition that spans a tube. The acoustic impedance was also measured experimentally using an error-controlled

setup. As porosity increased, the reactance tended to decrease because the attached mass on the orifices is decreased by the

interaction effect. The acoustic impedance predicted by the proposed model shows reasonable agreement with measured

data over the wide range of porosity values tested, except where nonlinear effects are observed. For comparison of the

performance of the new impedance model against two previous models that did not consider the interaction effect, each

was used in the evaluation of the transmission loss of perforated baffles. The predicted transmission losses using the new

impedance model agree better with the measured data than those using the previous models, in particular at high porosities

and at high frequencies.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Perforated plates under bias flow, or cross-flow, are widely used in automotive mufflers and flow ducts of
combustion systems for the suppression of noise and flow instability. Noise attenuation occurs due to
impedance mismatch and energy dissipation at orifices as well as within backing porous materials, where
present. In these cases, the acoustical performance of perforated plates contributes greatly to the noise
characteristics of a whole system. The flow through the orifice and the interaction with the surrounding tube
wall and other orifices affect substantially the acoustic impedance. Therefore, a realistic model is needed for
the characterization of the acoustic impedance of orifices under bias flow condition, to enable the overall
prediction of the acoustic performance of a silencer system.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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The acoustic properties of perforated plates under bias flow condition have been studied theoretically and
experimentally by many researchers. Bauer [1] introduced the effect of bias flow velocity on the acoustic
impedance model of perforated liner with grazing flow. Howe [2] theoretically derived the Rayleigh
conductivity of an orifice located on an infinite plate baffle with infinitesimal thickness under bias flow
condition. A sufficiently large Reynolds number was assumed such that the viscous effect was deemed
negligible except near the rim of an orifice. Bechert [3] showed that the existence of the Kutta condition at the
edge of a rigid surface in a flow causes the shedding of fluctuating vorticity and this process leads to sound
absorption by extracting energy from the sound field. Hughes and Dowling [4] expanded Howe’s model [2] to
a very thin perforated screen backed by a rigid wall, on which orifices are distributed very sparsely. Good
agreement between predicted and experimental results was observed. Howe [5] showed that the acoustic
properties of a perforated liner under grazing flow conditions can be changed by varying the orifice thickness.
Peat et al. [6] analytically investigated the effect of finite thickness upon the acoustic impedance of a
rectangular aperture in a plate with grazing flow. Jing and Sun [7] modified Howe’s model [2] to consider the
thickness effect by using an oscillating air mass piston model, which was first used by Rayleigh [8] in the
absence of flow. Later, Jing and Sun [9] solved the governing equation derived by Howe [2] numerically, using
the boundary-element method with consideration of the thickness. Bellucci et al. [10] presented a model to
predict the acoustic impedance of a perforated screen. They combined two different sub-models for revealing
the linear and nonlinear impedance behavior. Eldredge and Dowling [11] investigated the effects of a
perforated liner with mean bias flow on the absorption of planar acoustic waves in a circular duct. Several
experimental works were carried out with bias flow through a perforated screen. Dean and Tester [12] showed
experimentally that the acoustic impedance can be controlled by changing the bias flow velocity. The
experiments of Salikuddin et al. [13] showed that the resistance of a perforated plate increases and the
reactance decreases with increasing bias mean flow. Jing and Sun [7] showed that the absorption coefficient
and effective bandwidth of a perforated liner increase as the bias flow velocity increases and also that the plate
thickness plays a dominant role in the acoustic properties.

Previous researchers assumed that the acoustic impedance of perforated plates can be derived from the
impedance of a single orifice in an infinite plate baffle, given the assumption that the spacing between orifices is
much larger than the radius of an orifice. However, in practical applications, the orifices are usually closely
spaced, such that interactions between neighboring orifices can influence the acoustic performance of
perforated liners profoundly. Due to this reason, there has been a limitation in actual applications of previous
orifice impedance models. Ingard [14] considered the two-aperture interaction case and he found that the end
correction was very dependent on the separation. Fok [15] investigated the interaction effects between orifices
in the absence of flow by considering the conductance of an aperture in a partition across a tube. Melling [16]
summarized the impedance models and suggested an impedance model of a perforate considering the
interaction effects by using Fok’s function [15]. Those models for the interaction effect are only applicable to
the orifices with infinitesimal thickness and no mean flow condition. In this research, the acoustic impedance
of a perforated circular orifice with bias flow is analyzed numerically and experimentally considering the
interaction between orifices. The numerical prediction was accomplished by solving the incompressible Euler
equation for an orifice in a finite-thickness partition that spans a circular tube. The interaction effect was
considered by varying the radius ratio of orifice to tube. The acoustic impedance was measured under very
carefully controlled measurement conditions for varying values of the parameters of influence. These key
parameters are the orifice diameter, orifice thickness, plate porosity and mean flow Mach number through an
orifice. To verify the effect of interaction between orifices, the transmission loss of perforated baffles under
bias flow condition was also measured and predicted.

2. Theoretical analysis

The acoustic impedance of perforated liners, with consideration given to the interaction effects, can be
analyzed by using an approximate method that employs the geometry of an orifice in a finite-thickness
partition that spans a circular cylindrical tube, as illustrated in Fig. 1 in which the cylindrical coordinate
(x, r, y) is used. The tube wall influences both the streamline and the kinetic energy of oscillating mass through
an orifice, so the impedance of an orifice in a finite-thickness partition across a tube differs from that of an
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Fig. 1. Orifice in a thick partition within a circular tube with steady bias flow.
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orifice in an infinite baffle. If the radius ratio of orifice to tube, Rori/Rtub, becomes zero, the orifice can be
assumed to be located in an infinite baffle. Uniform harmonic pressure and velocity perturbations are
considered at the inlet and outlet of the tube as

p ¼ Pejot ðat inlet surfaceÞ, (1a)

u ¼ Uejot ðat outlet surfaceÞ. (1b)

These perturbations are assumed to be produced by a low-frequency sound wave, such that the wavelength is
much larger than the orifice radius. At high Reynolds numbers, the viscous force can generally be considered
as negligible in comparison with the inertia force and is expected to play a dominant role only at the rim of
orifice. If the Mach number of the mean flow is low, the density is not much changed by variations in the flow
velocity. So, where a low Mach number, high Reynolds number steady flow through a tube is concerned, one
can use the incompressible Euler equation [2]. The viscous effect at the inlet edge of the orifice is considered by
employing a Kutta condition, such that the fluctuating velocity and pressure are non-singular at the rim of the
orifice. If the orifice is exposed to incompressible, inviscid fluid flows, the vorticity far from the body will be
zero and the flow will be irrotational by the Kelvin’s theorem [17]. Vorticity changes are therefore caused by
the rotation and stretching of vortex tubes at the boundaries and diffusion across the boundaries by viscosity.
To simplify the governing equations, the radial component of the perturbation vorticity is neglected under
the assumption that the radial diffusion of vorticity by the shear layer is ineffective on the enthalpy through
the orifice. In addition, the cross-product of mean flow velocity and vorticity can also be neglected [2]. The
linearized Euler equation [2] can be written as

r2h ¼ �r � ðX�U0Þ, (2)

where X is the perturbation vorticity, U0 the mean flow velocity through the orifice and h is the Bernoulli
enthalpy, defined by

h ¼
p

r0
þU0 � u ¼ �

qf
qt
þ const: (3)

Here, r0 is the density of a medium, u is the perturbation velocity, and f is the perturbation velocity potential.
For high Reynolds number flow the shear layer becomes very thin. Thus the perturbation vorticity [2] can be
approximated as

X ¼ g exp joðt� s=U0Þ
� �

dðnsÞk, (4)

where g is the strength of a shed vortex sheet, s the distance from the inlet edge along the vortex streamline,
d(x) the delta function, ns the normal coordinate of free streamline of bias flow, and k the unit vector in the y
direction. From Eqs. (2) and (4), the following axisymmetric Poisson equation can be obtained:

1

r

q
qr

r
qh

qr

� �
þ

q2h

qx2
¼ �r � gU0 exp �

jos

U0

� �
dðnsÞns

� �
. (5)
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Eq. (5) can be converted to the integral equations using a half-space Green function, Gh, which satisfies the
following relations [9]:

r2Gh ¼ dðx� yÞ;
qGh

qy

����
y¼0

¼ 0, (6a,b)

Ghðx; r; y; y; r;jÞ ¼ �
1

4p
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� yÞ2 þ r2 þ r2 � 2rr cosðy� jÞ
q

�
1

4p
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxþ yÞ2 þ r2 þ r2 � 2rr cosðy� jÞ
q . ð7Þ

In other words, Eq. (7) can be the solution of Eq. (5) with the boundary conditions in Eqs. (6a) and (6b) in
cylindrical coordinates as shown in Fig. 2. Fig. 2 shows the integration space that is divided into two regions
by the surface S0. Surfaces in the two domains are designated as Si (i ¼ 1; 2; . . . ; 8). The geometry of the free
streamline obtained from experimental data [18] depends upon the following nine variables [19]: x; R0; Rtub;
U0; r0; m, the dynamic viscosity; gw, the specific weight; st, the surface tension of the liquid; kr, the scale of
surface roughness in the pipe. Using the Buckingham p-theorem to combine these variables into dimensionless
groupings, one can obtain

r

Rori
¼ F 0

z

Rori
;

Rori

Rtub
;
r0U0Rori

m
;

U0

ðRorigw=r0Þ
1=2
;

U0

ðst=r0RoriÞ
1=2
;

kr

Rori

 !
. (8)

The last term on the right-hand side will be disregarded because the surfaces are assumed to be smooth. If the
symbols Re, Fr, and We are used to represent the Reynolds, Froude, and Weber numbers, respectively, then
the above equation becomes

r

Rori
¼ F 1

x

Rori
;
Rori

Rtub
;Re;Fr;We

� �
. (9)

In this study, if the viscous, gravitational, and capillary effects are assumed to be negligible, the jet profile can
be determined by only the radius ratio of orifice to tube. The length of the tube in each domain, L, is set to
5Rtub, and the length of free streamline is truncated at 5Rori. The length of the tube and the free streamline is
decided by the parametric analysis. The boundary conditions for solving the governing equations are

qh

qn
¼ 0 ðon S1;S2;S3;S6; and S8Þ, (10a)

h ¼ H1 ðon S7Þ;
qh

qn
¼ H2 ðon S4Þ. (10b,c)

Eq. (10b) enforces a uniform sinusoidal pressure fluctuation at the inlet, S7, and Eq. (10c) gives a uniform
sinusoidal velocity fluctuation at the outlet, S4. Finally, the expressions for h in the two domains can be
Fig. 2. Integration domains and surfaces.
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obtained as
1

2
h ¼ �

Z
S0

qh

qy
Gh dS �

Z
S6

h
qGh

qr
dS �

Z
S7

qh

qy
Gh � h

qGh

qy

� �
dS ðxo0Þ (11)

and
1

2
h ¼

Z
S0

qh

qy
Gh dS þ

Z
S1

h
qGh

qr
dS �

Z
S2

h
qGh

qy
dS þ

Z
S3

h
qGh

qr
dS

þ

Z
S4

qh

qy
Gh � h

qGh

qy

� �
dS �

Z
S5

gU0 exp �
jos

U0

� �
qGh

qns

dS ðx40Þ. ð12Þ

In order to couple the two domains, the following continuity equations of Bernoulli enthalpy and its normal
derivative can be used:

hjx¼0þ ;r ¼ hjx¼0�;r;
qh

qx

����
x¼0þ ;r

¼
qh

qx

����
x¼0� ;r

. (13a,b)

Using Eqs. (11)–(13), the integral equations on each surface can be derived as

2

Z
S0

qh

qy
Gh dS þ

Z
S1

h
qGh

qr
dS �

Z
S2

h
qGh

qy
dS þ

Z
S3

h
qGh

qr
dS

þ

Z
S4

qh

qy
Gh � h

qGh

qy

� �
dS þ

Z
S6

h
qGh

qr
dS þ

Z
S7

qh

qy
Gh � h

qGh

qy

� �
dS

�

Z
S5

gU0 exp �
jsSt

Rori

� �
qGh

qns

dS ¼ 0 ðon S0Þ, ð14Þ

�
1

2
hþ

Z
S0

qh

qy
Gh dS þ

Z
S1

h
qGh

qr
dS �

Z
S2

h
qGh

qy
dS þ

Z
S3

h
qGh

qr
dS

þ

Z
S4

qh

qy
Gh � h

qGh

qy

� �
dS �

Z
S5

gU0 exp �
jsSt

Rori

� �
qGh

qns

dS ¼ 0 ðon S12S4Þ, ð15Þ

1

2
hþ

Z
S0

qh

qy
Gh dS þ

Z
S6

h
qGh

qr
dS þ

Z
S7

qh

qy
Gh � h

qGh

qy

� �
dS ¼ 0 ðon S6 and S7Þ. (16)

Here, St0 ( ¼ Rorio/U0) is the Strouhal number. The strength of the shed vorticity g is determined by the Kutta
condition, which can be written as

qh

qn

����
x¼0;r¼R�

ori

¼ 0, (17)

where n is normal to the separation streamline at the inlet edge of the orifice.
The integral equations (14)–(16) can be solved numerically using the boundary-element method. The surface

integrals can be simplified into line integrals by using the axisymmetric potential function [20]. Constant
elements are adopted and the control points on S0–S4, S6, and S7 are designated as Ni (i ¼ 0–4, 6, 7) for each
ith surface. The unknown variable on S0 and S7 is qh/qy and the unknown variable on S0–S4 and S6 is h. In
the last integral in Eqs. (14) and (15), the only unknown variable is the strength of the shed vortex sheet, g. The
Rayleigh conductivity is defined as the ratio of volume flux to potential difference between the ends of the
channel [9]. After the numerical implementation, the Rayleigh conductivity of the total system, namely a tube
and an orifice in a partition, can be obtained as

K tot
R ¼

jor0Q
pþ � p�

¼
joQ

ðpþ � p�Þ=r0
¼

joQ

h̄7 � h̄4

, (18)
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where (p+�p�) denotes the pressure difference across the total system, h̄7 and h̄4 are the Bernoulli enthalpies
averaged across the inlet and outlet cross-section of the tube, respectively, and Q is the volume flux, defined as

Q ¼
1

jo

Z
S0

qh

qx
dS. (19)

The total conductivity, which is obtained by solving the foregoing integral equations numerically, may be
considered to consist of two separate parts, namely the conductivity of the tube, K tub

R , and the conductivity of
an orifice in the partition, Kori

R . Then, the total conductivity, K tot
R , can be expressed as

1

K tot
R

¼
1

K tub
R

þ
1

Kori
R

. (20)

Using the theoretical conductivity value of the tube, K tub
R , which is equal to pR2

tub=ð2Lþ TÞ, the conductivity
of an orifice in a finite plate can be obtained from Eq. (20). It can be converted to the normalized acoustic
impedance of an orifice as

Zori ¼
pþ � p�

r0ðo=kÞðQ=SÞ
¼ jkS

pþ � p�
jor0Q

¼
jkS

Kori
R

, (21)

where S ¼ pRori
2 and k is the wavenumber. Fok [15] derived the conductivity of an orifice using both thickness,

T, and end correction length, Dl, as

Kori
R ¼

S

T þ Dl
. (22)

Using Eqs. (21) and (22), the non-dimensional acoustic impedance of an orifice can be expressed as

Zori

Mori
¼

jkðT þ DlÞ

Mori
¼ jSt0

T

Rori
þ

Dl

Rori

� �
¼ jSt 1þ

Dl

T

� �
, (23)

where Mori is the Mach number of the mean flow through the orifice and St ¼ To/U0. It is noted that the non-
dimensional acoustic impedance in Eq. (23) is expressed by multiplication of the Strouhal number and a term
that includes a non-dimensional thickness. Previous results [21–25] reveal that the acoustic impedance of
perforated plates with grazing flow can be conveniently non-dimensionalized by the Strouhal number. The
orifice radius and the grazing mean flow velocity are major parameters in the grazing flow condition, whereas
the orifice thickness and the bias mean flow velocity are dominant in the bias flow condition. In this study, the
acoustic impedance is expressed by non-dimensional parameters, viz. Zori/Mori, St, porosity and T/Rori.

Fig. 3 compares the predicted acoustic impedance given by the present model with the previous impedance
models [2,7,9]. The acoustic impedance of a perforated plate for which the thickness-to-radius ratio is 0.5 was
predicted with varying porosity from 0.1% to 20%. The modified Howe’s model, as suggested by Jing and Sun
[7] for consideration of the effect of aperture thickness, is

Zp ¼ Ze þ jkT , (24)

where Ze denotes the theoretical acoustic impedance of a very thin orifice given by Howe [2] and Zp

implies the modified model for an orifice containing the thickness effect. No appreciable change was observed
in the resistance when varying the porosity. However, the gradient of the reactance curve becomes smaller
as the porosity increases. When the porosity reaches 0.1%, the predicted reactance is very similar to that
of the previous models [2,7,9] that did not consider the interaction effect. When the porosity becomes 20%, the
change in the reactance value from that of a single aperture is as much as 30%.

3. Experiments

Fig. 4 shows the experimental setup for measuring the acoustic impedance of perforated plates with bias
flow. A compressor supplied the airflow through its ancillaries for flow regularization. The flow velocity was
measured by a digital flow meter (Flowmetrics FM-20N). The range of mean flow Mach number in the orifice
was from 0 to 0.19. The input sound signal was generated by a 200-W compression driver (JBL 2490H)
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Fig. 4. Experimental setup for measuring the acoustic impedance of perforates with bias flow.

Fig. 3. Predicted acoustic impedance considering the interaction effects (T/Rori ¼ 0.5): , s ¼ 0.1%; , s ¼ 1.4%;

, s ¼ 5.6%; , s ¼ 9.8%; , s ¼ 15%; , s ¼ 20%; ’, modified Howe’s model [2,7]; K, Jing and Sun’s

model [9]. (a) Non-dimensionalized acoustic resistance, (b) non-dimensionalized acoustic reactance.
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mounted on the upstream side-wall, with a low cutoff frequency of 150Hz. A swept sine signal was used for
exciting the speaker in order to increase the signal-to-noise ratio. A flow meter and a compression driver were
installed at 1.5m upstream to the test section. A square acrylic duct, 30� 30mm2 in cross-section and 10mm
in thickness, was used as the main flow duct. To suppress the negative effect due to reflected sounds, an
anechoic termination of the test duct was used. A perforated plate was installed vertically to the main duct.
Three quarter-inch microphones (B&K 4939) were flush mounted in series on the upstream duct as an array
for reducing errors [26]. The two frequency response functions between microphones were measured and the
phase matching was tested before the main experiments. The phase mismatch of the two pairs of microphones
and amplifiers were less than 0.51 over the frequency range of the measurements and the remaining small
mismatched phase was compensated in the post processing. Generation of source signal and analysis of
measured signal were performed by a multichannel signal analyzer (B&K Pulse system). The background
noise level in the test duct was less than 48 dB for all frequencies during the experiments. The acoustic
impedance of perforates with bias flow was defined by the ratio of the pressure differences between upstream
and downstream positions to the particle velocity through perforates. For measuring the impedance of
perforated plates with bias flow, the impedance tube method was used [14,27]. The impedance can be obtained
by measuring the surface impedance with and without the perforated plate using only upstream mounted
microphones. The acoustic impedance under the bias flow condition was measured with the following
parameter ranges: 1mmpRorip6.5mm, 0.5mmpTp3mm, 5.6%psp19.6%, 150Hzpfp3000Hz,
0.033pMorip0.19, and 100 dBpin-duct SPLp148 dB. It is assumed that the behavior of impedance for
input SPLs less than 100 dB would be very similar to those of 100–110 dB. When the bias flow passes through
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Fig. 5. Measured acoustic impedance with respect to the Strouhal number varying the orifice Mach number (Rori ¼ 2mm, T ¼ 1mm,

s ¼ 20%): , Mori ¼ 0.033; , Mori ¼ 0.066; , Mori ¼ 0.099; , Mori ¼ 0.13; , Mori ¼ 0.17.

(a) Resistance, (b) reactance.

S.-H. Lee et al. / Journal of Sound and Vibration 303 (2007) 741–752748
the perforates, the mean flow Mach number of an orifice can be calculated from the mean flow Mach number
in the main duct divided by the porosity as given by Mori ¼Mduct/s.

Fig. 5 shows the measured acoustic impedance when varying the mean flow Mach number within an orifice.
As the mean flow Mach number of an orifice increases, the resistance has peaky values and the reactance
experiences sign changes from negative to positive. When the mean flow Mach number of an orifice is larger
than about 0.1, a nonlinear trend can be observed. In the next section, where the measured impedance data are
compared with predicted values, an orifice Mach number of 0.1 was used because the prediction model in this
study does not include such nonlinear effects.
4. Comparison of theoretical and experimental results

Before comparison of the measured and predicted results for impedance, the assumptions used in the
theoretical model are compared with the actual experimental conditions. The model is based on the following
assumptions: the fluid motion is governed by the incompressible Euler equation with high Reynolds number
and low Mach number condition; viscous effects are considered only at the rim of aperture, by use of a Kutta
condition. Because the incompressibility assumption is reasonable only for slowly time-varying acoustic
problems, i.e., at low frequencies, the excitation wavelength should greatly exceed the aperture radius. In the
actual experiments, the mean flow Mach number in an orifice ranges from 0.033 to 0.19 and the corresponding
Reynolds number in the main duct ranges from 3320 to 24400. The wavelength of the incident wave, which
can be determined by the excitation frequency range (150Hz–3 kHz), varied from 0.113 to 2.27m and the
range of orifice radius was from 0.001 to 0.0065m. The minimum wavelength of the excitation signal was
larger than the maximum orifice radius by a factor of 17.6. Consequently, it can be said that the assumptions
in the theoretical model were mostly satisfied in the experiments.

Three major input parameters are required for the numerical predictions: the Strouhal number, the ratio of
orifice thickness to orifice radius, and the ratio of tube radius to orifice radius. The radius ratio of tube to
orifice can be expressed solely in terms of the porosity, as

Rtub=Rori ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Spla=np

q .
Rori ¼ 1


 ffiffiffi
s
p

, (25)

where Spla denotes the area of perforated plate and n is the number of orifices. In Figs. 6 and 7, measured and
predicted acoustic impedance values are compared for the same thickness-to-radius ratio (T/Rori ¼ 1 for Fig. 6
and T/Rori ¼ 1.5 for Fig. 7) and porosity (s ¼ 15.4%). They show reasonable agreement in the low Strouhal
number region, especially for reactance. The trend in resistance is reasonable but the deviation was about
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Fig. 6. A comparison of measured and predicted acoustic impedance of perforated plates having same thickness-to-radius ratio and

porosity: , measured (T/Rori ( ¼ 1.5mm/1.5mm) ¼ 1, s ¼ 15.4%); , measured (T/Rori ( ¼ 2mm/2mm) ¼ 1, s ¼ 15.4%);

, predicted (T/Rori ¼ 1, s ¼ 15.4%). (a) Resistance, (b) reactance.

Fig. 7. A comparison of measured and predicted acoustic impedance of perforated plates having same thickness-to-radius ratio and

porosity: , measured (T/Rori ( ¼ 1.5mm/1mm) ¼ 1.5, s ¼ 15.4%); , measured (T/Rori ( ¼ 3mm/2mm) ¼ 1.5,

s ¼ 15.4%); , predicted (T/Rori ¼ 1.5, s ¼ 15.4%). (a) Resistance, (b) reactance.
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10–20% for St ¼ 0–1.3. As the Strouhal number increases, discrepancies in the reactance increase. When the
ratio of thickness-to-radius is large, a similar trend holds for the measured and predicted acoustic impedance.
Fig. 8 shows a comparison of measured and predicted impedance when the porosity varies from 5.6% to
19.6% (Rori ¼ 2mm, T ¼ 1mm). Measured and predicted reactance increase slowly with increasing porosity.
The change of acoustic impedance with varying ratio of thickness-to-radius is shown in Figs. 9 and 10. Fig. 9
illustrates the effects of this ratio on the acoustic impedance as the orifice radius varies from 1.5 to 6.5mm,
with fixed thickness and porosity (T ¼ 1.5mm, s ¼ 15.4%). Fig. 10 shows the effect of the ratio as the
orifice thickness varies from 1 to 3mm, with fixed orifice radius and porosity (Rori ¼ 2mm, s ¼ 15.4%).
In the foregoing results, the predicted acoustic impedance considering interaction effects shows reasonable
agreement with measurements. However, the experimental results indicate little change of reactance with
thickness-to-radius ratio as the thickness changes, but a large effect similar to the predicted values as the
radius changes. The reactance tends to increase as the thickness-to-radius ratio decreases because the attached
mass increases.
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Fig. 8. A comparison of measured and predicted acoustic impedance varying the porosity (Rori ¼ 2mm, T ¼ 1mm): , s ¼ 5.6%

(predicted); , s ¼ 9.8% (predicted); , s ¼ 15.4%; , s ¼ 19.5% (predicted); ’, s ¼ 5.6% (measured);

K, s ¼ 9.8% (measured); m, s ¼ 15.4% (measured), s ¼ 19.5% (measured). (a) Resistance, (b) reactance.

Fig. 9. A comparison of measured and predicted acoustic impedance varying the thickness-to-radius ratio (s ¼ 15.4%, T ¼ 1.5mm):

, T/Rori ¼ 1 (predicted); , T/Rori ¼ 0.6 (predicted); , T/Rori ¼ 0.23 (predicted); ’, T/Rori ¼ 1

(measured); K, T/Rori ¼ 0.6 (measured); m, T/Rori ¼ 0.23 (measured). (a) Resistance, (b) reactance.
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In order to verify the effect of interaction between orifices, the transmission loss of perforated baffles under
bias flow conditions was also measured and predicted. The experimental setup for measuring the transmission
loss of a perforated plate under bias flow conditions was very similar to that shown in Fig. 4, except that
another three microphone array was used downstream of the perforated baffle. A perforated plate,
30� 30mm2 in size, 1mm in thickness, with orifices of 2mm in diameter, was used in all experiments, with
varying porosity. The transmission loss was obtained by using downstream and upstream reflection
coefficients and the transfer function between two microphones located upstream and downstream of the test
section [28]. For the prediction of transmission loss, the four pole parameters of a perforated plate were used.
Fig. 11 shows a comparison between measured and predicted transmission loss. The predicted transmission
loss from the new model that considers orifice interactions shows better agreement with measured data than
that by the other two models which ignore the interaction effect. From this result, it is seen that consideration
of the interaction effect between orifices is important in the prediction of the acoustic performance of silencing
devices that contain perforated elements with bias flow.
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Fig. 10. A comparison of measured and predicted acoustic impedance varying the thickness-to-radius ratio (s ¼ 15.4%, Rori ¼ 2mm):

, T/Rori ¼ 0.5; , T/Rori ¼ 1; , T/Rori ¼ 1.5; thick lines, measured; thin lines, predicted. (a) Resistance,

(b) reactance.

Fig. 11. A comparison of measured and predicted transmission loss of perforated plate considering the interaction effect (Rori ¼ 2mm,

T ¼ 1mm): , measured; , present model; , Jing and Sun’s model [9]; , modified Howe’s model [2,7].

(a) s ¼ 9.8%, Mori ¼ 0.06; (b) s ¼ 20%, Mori ¼ 0.05.
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5. Conclusions

In this study, the effect of interaction between orifices on the acoustic impedance of perforated plates with
bias flow was analyzed numerically and experimentally. In the numerical predictions, the acoustic impedance
of an orifice of radius Rori in a finite-thickness partition across a tube of radius Rtub was calculated by solving
the incompressible Euler equation using the boundary-element method. The analysis implies that the acoustic
impedance, in the form of the normalized impedance of an orifice divided by the mean flow Mach number
through an orifice, Zori/Mori, is governed by a further three non-dimensional parameters. These are the
porosity, the thickness-to-radius ratio and the Strouhal number, defined as To/U0. The measurements were
repeated with varying orifice diameter, orifice thickness, porosity, and mean flow Mach number through an
orifice. Nonlinear trends in both resistance and reactance were observed in the measurements when the mean
flow Mach number through an orifice exceeded 0.1. Measured and predicted acoustic impedance were
compared for varying porosity and thickness-to-radius ratio. As the porosity increases, the reactance tends to
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decrease because of the interaction between orifices. The predicted impedance considering the interaction
effect showed reasonable agreements with measured data over the range of porosity used in the experiments,
namely 5–20%. Calculated orifice impedance values were used to predict the transmission loss of a perforated
baffle partition in a tube with bias flow. Within the frequency range that satisfies the incompressibility
assumption, viz., for frequencies at which the excitation wavelength far exceeds the aperture radius, the
predicted values were compared with measured transmission loss results and the present model was shown to
be better than the previous models, especially for results at the high end of the frequency range.
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